Orders of Elements in a Group
نویسنده
چکیده
cos 2π n + i sin 2π n is an example of an element of C× with order n. If G is a finite group, every g ∈ G has finite order. The proof is as follows. Since the set of powers {ga : a ∈ Z} is a subset of G and the exponents a run over all integers, an infinite set, there must be a repetition: ga = gb for some a < b in Z. Then gb−a = e, so g has finite order. (Taking the contrapositive, if g has infinite order its integral powers have no repetitions: ga = gb =⇒ a = b.) There are three questions about elements of finite order that we want to address: (1) When g ∈ G has a known finite order, how can we tell when two powers gk and g` are the same directly in terms of the exponents k and `? (2) When g has finite order, how is the order of a power gk related to the order of g? (3) When two elements g1 and g2 of a group have finite order, how is the order of their product g1g2 related to the orders of g1 and g2?
منابع مشابه
A Characterization of the Small Suzuki Groups by the Number of the Same Element Order
Suppose that is a finite group. Then the set of all prime divisors of is denoted by and the set of element orders of is denoted by . Suppose that . Then the number of elements of order in is denoted by and the sizes of the set of elements with the same order is denoted by ; that is, . In this paper, we prove that if is a group such that , where , then . Here denotes the family of Suzuk...
متن کاملNSE characterization of some linear groups
For a finite group $G$, let $nse(G)={m_kmid kinpi_e(G)}$, where $m_k$ is the number of elements of order $k$ in $G$ and $pi_{e}(G)$ is the set of element orders of $G$. In this paper, we prove that $Gcong L_m(2)$ if and only if $pmid |G|$ and $nse(G)=nse(L_m(2))$, where $min {n,n+1}$ and $2^n-1=p$ is a prime number.
متن کاملMaximum sum element orders of all proper subgroups of PGL(2, q)
In this paper we show that if q is a power of a prime p , then the projective special linear group PSL(2, q) and the stabilizer of a point of the projective line have maximum sum element orders among all proper subgroups of projective general linear group PGL(2, q) for q odd and even respectively
متن کاملOD-characterization of Almost Simple Groups Related to displaystyle D4(4)
Let $G$ be a finite group and $pi_{e}(G)$ be the set of orders of all elements in $G$. The set $pi_{e}(G)$ determines the prime graph (or Grunberg-Kegel graph) $Gamma(G)$ whose vertex set is $pi(G)$, the set of primes dividing the order of $G$, and two vertices $p$ and $q$ are adjacent if and only if $pqinpi_{e}(G)$. The degree $deg(p)$ of a vertex $pin pi(G)$, is the number of edges incident...
متن کاملOn the Minimal Distance between Group Tables
We examine the minimal distance (number of differing entries) between different group tables of the same order n. Here group table means a matrix of order n with entries from a fixed set of n symbols, which (with suitable border elements) is the multiplication table of a group. (The border elements are not considered part of the table. A group is defined up to isomorphism by its multiplication ...
متن کاملCubic symmetric graphs of orders $36p$ and $36p^{2}$
A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we classifyall the connected cubic symmetric graphs of order $36p$ and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014